Daftar Blog Saya

Senin, 12 Desember 2011

Konversi energi termal lautan

Konversi energi termal lautan


Konversi energi termal lautan (bahasa Inggris: ocean thermal energy conversion) adalah metode untuk menghasilkan energi listrik menggunakan perbedaan temperatur yang berada di antara laut dalam dan perairan dekat permukaan untuk menjalankan mesin kalor. Seperti pada umumnya mesin kalor, efisiensi dan energi terbesar dihasilkan oleh perbedaan temperatur yang paling besar. Perbedaan temperatur antara laut dalam dan perairan permukaan umumnya semakin besar jika semakin dekat ke ekuator. Pada awalnya, tantangan perancangan OTEC adalah untuk menghasilkan energi yang sebesar-besarnya secara efisien dengan perbedaan temperatur yang sekecil-kecilnya.
Permukaan laut dipanaskan secara terus menerus dengan bantuan sinar matahari, dan lautan menutupi hampir 70% area permukaan bumi. Perbedaan temperatur ini menyimpan banyak energi matahari yang berpotensial bagi umat manusia untuk dipergunakan. Jika hal ini bisa dilakukan dengan cost effective dan dalam skala yang besar, OTEC mampu menyediakan sumber energi terbaharukan yang diperlukan untuk menutupi berbagai masalah energi.
Konsep mesin kalor adalah umum pada termodinamika, dan banyak energi yang berada di sekitar manusia dihasilkan oleh konsep ini. Mesin kalor adalah alat termodinamika yang diletakkan di antara reservoir temperatur tinggi dan reservoir temperatur rendah. Ketika kalor mengalir dari temperatur tinggi ke temperatur rendah, alat tersebut mengubah sebagian kalor menjadi kerja. Prinsip ini digunakan pada mesin uap dan mesin pembakaran dalam, sedangkan pada alat pendingin, konsep tersebut dibalik. Dibandingkan dengan menggunakan energi hasil pembakaran bahan bakar, energi yang dihasilkan OTEC didapat dengan memanfaatkan perbedaan temperatur lautan disebabkan oleh pemanasan oleh matahari.
Siklus kalor yang sesuai dengan OTEC adalah siklus Rankine, menggunakan turbin bertekanan rendah. Sistem dapat berupa siklus tertutup ataupun terbuka. Siklus tertutup menggunakan cairan khusus yang umumnya bekerja sebagai refrigeran, misalnya ammonia. Siklus terbuka menggunakan air yang dipanaskan sebagai cairan yang bekerja di dalam siklusnya.
Fasilitas OTEC berbasis daratan di Keahole Point, pesisir pantai Hawaii

Sejarah

Meski sistem OTEC adalah suatu teknologi terbaru, konsepnya memiliki jalan pengembangan yang panjang. Dimulai pada tahun 1881, yaitu ketika Jacques Arsene d'Arsonval, fisikawan prancis yang mengajukan konsep konversi energi termal lautan. Dan murid d'Arsonval, George Claude yang membuat pembangkit listrik OTEC pertama kalinya di Kuba pada tahun 1930. Pembangkit listrik itu menghasilkan listrik 22 kilowatt dengan turbin bertekanan rendah.
Pada tahun 1931, Nikola Tesla meluncurkan buku "On Future Motive Power" yang mencakup konversi energi termal lautan. Meski ia tertarik dengan konsep tersebut, ia beranggapan bahwa hal ini tidak bisa dilakukan dalam skala besar.
Di tahun 1935, Claude membangun pembangkit kedua di atas 10000 ton kargo yang mengapung di atas lepas pantai Brazil. Namun cuaca dan gelombang menghancurkan pembangkit listrik tersebut sebelum bisa menghasilkan energi.
Di tahun 1956, para fisikawan Prancis mendesain 3 megawatt pembangkit listrik OTEC di Abidjan, Pantai Gading. Pembangkit listrik OTEC itu tak pernah selesai karena murahnya harga minyak di tahun 1950an yang membuat pembangkit listrik tenaga minyak lebih ekonomis.
Di tahun 1962, J. Hilbert Anderson dan James H. Anderson, Jr. mulai mendesain sebuah siklus untuk mencapai tujuan yang tidak dicapai Claude. Mereka fokus pada pengembangan desain baru dengan efisiensi yang lebih tinggi. Setelah menganalisa masalah yang ditemukan pada desain Claude, akhirnya mereka mematenkan desain siklus tertutup buatan mereka pada tahun 1967.
Amerika serikat mulai terlibat pada penelitian OTEC pada tahun 1974, ketika otoritas Natural Energy Laboratory of Hawaii mendirikan Keahole Point di Pantai Kona, Hawaii. Laboratorium itu merupakan fasilitas penelitian dan percobaan OTEC terbesar di dunia. Hawaii merupakan lokasi yang cocok untuk penelitian OTEC karena permukaan lautnya yang hangat dan akses ke laut dalam yang dingin. Selain itu, Hawaii juga negara bagian yang biaya listriknya cukup mahal di Amerika Serikat.
Meski Jepang tidak memiliki tempat yang berpotensial untuk mendirikan OTEC, namun Jepang banyak berkontribusi dalam penelitian dan pengembangan OTEC, terutama untuk ekspor dan penerapannya di luar negeri. Salah satu proyek Jepang dalam pengembangan OTEC adalah fasilitas OTEC di Nauru yang menghasilkan 120 kW listrik. 90 kW dimanfaatkan untuk menggerakkan fasilitas OTEC tersebut dan 30 kW dialirkan ke sekolah-sekolah dan beberapa tempat di Nauru.

Prinsip Kerja

Beberapa pakar energi berpendapat bahwa OTEC akan menjadi teknologi penghasil listrik yang sangat kompetitif di masa depan. OTEC dapat memproduksi listrik hingga skala gigawatt, dan dengan penggabungan dengan sistem elektrolisis, akan menghasilkan hidrogen cukup untuk menggantikan konsumsi bahan bakar fosil dunia. Tetapi, mengatur biaya adalah yang tersulit. Seluruh fasilitas OTEC membutuhkan peralatan khusus dan pipa panjang berdiameter besar yang ditenggelamkan hingga beberapa kilometer jauhnya dari permukaan untuk mendapatkan air dingin. Dan itu membutuhkan banyak biaya.

Berdasarkan lokasi

  • Daratan
  • Mengapung
  • Perairan dangkal

Berdasarkan sistem siklus yang digunakan

  • Siklus terbuka
  • Siklus tertutup
  • Siklus hybrid
Air laut yang dingin merupakan bagian utama dari tiga tipe siklus tersebut. Untuk mengoperasikannya, air laut yang dingin harus dipompa ke permukaan. Cara lainnya adalah dengan desalinasi air laut dekat dasar laut yang akan menyebabkan air laut itu mengalir ke atas karena perbedaan densitas.

Siklus tertutup

Diagram siklus tertutup OTEC
Siklus tertutup menggunakan fluida dengan titik didih rendah, misalnya amonia, untuk memutar turbin dan menghasilkan listrik. Air hangat di permukaan dipompa ke penukar panas di mana fluida bertitik didih rendah dididihkan. Fluida yang mengalami perubahan wujud menjadi uap akan mengalami peningkatan tekanan. Uap bertekanan tinggi ini lalu dialirkan ke turbin untuk menghasilkan listrik. Uap tersebut lalu didinginkan kembali dengan air dingin dari laut dalam dan mengembun. Lalu fluida kembali melakukan siklusnya.

[sunting] Siklus terbuka

Siklus terbuka menggunakan air laut untuk menghasilkan listrik. Air laut yang hangat dimasukkan ke dalam tangki bertekanan rendah sehingga menguap. Uap ini dugunakan untuk menggerakkan turbin. Air laut yang menguap meninggalkan mineral laut seperti garam dan lain sebagainya sehingga bermanfaat untuk menghasilkan air tawar untuk diminum dan irigasi.

Siklus hybrid

Siklus hybrid menggunakan keunggulan sistem siklus terbuka dan tertutup. Siklus hybrid menggunakan air laut yang dilekatakkan di tangki bertekanan rendah untuk dijaikan uap. Lalu uap tersebut digunakan untuk menguapkan fluida bertitik didih rendah (amonia atau yang lainnya). Uap air laut tersebut lalu dikondensasikan untuk menghasilkan air tawar desalinasi.

Teknologi terkait

OTEC memiliki banyak manfaat selain hanya menghasilkan energi listrik.

Air Conditioning

Air laut yang dingin yang dipompa oleh fasilitas OTEC memberikan kemampuan untuk pendinginan mesin-mesin yang berkaitan dengan fasilitas OTEC. Menurut perhitungan Departemen Energi Amerika Serikat, pipa berdiameter 0,3 m dapat memompa sebanyak 0,08 meter kuibk air perdetik. Jika 6 oC air dingin mampu dipompa oleh fasilitas OTEC, dapat digunakan untuk mendinginkan bangunan besar. Jika sistem beroperasi selama 8000 jam dan listrik lokal dijual seharga 5-10 sen per kWh, maka itu akan menghemat tagihan listrik sebesar 200.000 hingga 400.000 dolar pertahun.

Budidaya perairan

Sistem OTEC memiliki kemampuan untuk memompa air laut perairan dalam dalam jumlah besar. Air laut tersebut mengandung nutrisi yang diperlukan untuk budidaya perikanan. Budidaya salmon dan lobster sangat bergantung pada nutrisi dari laut dalam, sehingga hal ini sangat berpotensial untuk dikembangkan. Dinginnya air juga dapat dipergunakan untuk mengatur suhu air kolam budidaya dan mendinginkan hasil budidaya.

[sunting] Desalinasi

Sistem siklus terbuka dan hybrid OTEC dapat dimanfatkan untuk desalinasi. Air yang dikondensasi adalah air tawar tanpa mineral laut yang dapat dijadikan air minum atau irigasi pertanian dekat pantai.

Produksi hidrogen

Hidrogen bisa diproduksi lewat elektrolisis menggunakan listrik yang dihasilkan OTEC. Air hasil disalinasi dapat dimanfaatkan sebagai medium elektrolisis dengan penambahan bahan lain untuk meningkatkan efisiensi.

Ekstraksi mineral

Sejak dulu diketahui bahwa laut mengandung banyak sekali mineral terlarut yang dapat dimanfaatkan, misalnya magnesium, namun mahalnya biaya pemompaan dibandingkan dengan hasilnya membuat kegiatan tersebut tidak berlangsung secara besar-besaran. Dengan adanya fasilitas OTEC, ekstraksi mineral air laut dalam dapat dilakukan sambil memproduksi listrik.

Hambatan

  • Degradasi kemampuan penukar panas akibat gas terlarut
  • Degradasi kemampuan penukar panas akibat mikroba
  • Penutupan yang tidak rapat - hal ini penting karena OTEC bekerja pada tekanan rendah. Meningkatnya tekanan dapat menyebabkan berkurangnya kinerja pembangkit listrik
  • Kompresor tua dapat mengambil energi berlebih - hal ini dapat mengakibatkan total energi bersih yang dihasilkan berkurang

Kamis, 20 Oktober 2011

Pembangkit Listrik Tenaga Gelombang Laut(Full Version Encyclopedia)

  1. Energi ini dapat dikonversi ke listrik lewat 2 kategori yaitu off-shore (lepas pantai) and on-shore (pantai). Kategori lepas pantai (off-shore) dirancang pada kedalaman sekitar 40 meter dengan menggunakan mekanisme kumparan seperti Salter Duck yang diciptakan Stephen Salter (Scotish) yang memanfaatkan pergerakan gelombang untuk memompa energi. Sistem ini memanfaatkan gerakan relatif antara bagian/pembungkus luar (external hull) dan bandul didalamnya (internal pendulum) untuk diubah menjadi listrik. Peralatan yang digunakan yaitu pipa penyambung ke pengapung di permukaan yang mengikuti gerakan gelombang. Naik turunnya pengapung berpengaruh pada pipa penghubung selanjutnya menggerakan rotasi turbin bawah laut.

    Di Amerika Serikat, telah ada perusahan yang mengembangkan untaian buoy pelampung plastik yang mendukung penghasil listrik ini. Setiap Buoy pelampung bisa menghasilkan 20 kW listrik dan saat ini telah dikembangkan untuk mengisi ulang energi (recharge) bagi robot selam angkatan laut AS dan digunakan bagi komunitas kecil. Cara lain untuk menangkap energi gelombang lepas pantai adalah dengan membangun tempat khusus seperti sistem tabung Matsuda, metodenya adalah memanfaatkan gerak gelombang yang masuk di dalam ruang bawah dalam pelampung dan sehingga timbul gerakan perpindahan udara ke bagian atas pelampung. Gerakan perpindahan udara ini menggerakkan turbin. Pusat Teknologi Kelautan Jepang telah mengembangkan prototype jenis ini yang disebut ‘Mighty Whale’ berupa peralatan penangkap gelombang yang di tempatkan di dasar laut (anchored) dan dikontrol dari pantai untuk kebutuhan listrik di pulau-pulau kecil.

    Sistem on-shore mengkonversi gelombang pantai untuk menghasilkan energi listrik lewat 3 sistem: channel systems, float systems dan oscillating water column systems. Prinsipnya energi mekanik yang tercipta dari sistem-sistem ini secara langsung mengaktifkan generator dengan mentransfer gelombang pada fluida, air atau udara penggerak yang kemudian mengaktifkan turbin generator. Pada channel systems gelombang disalurkan lewat suatu saluran kedalam bangunan penjebak seperti kolam buatan (lagoon).

    Ketika gelombang muncul, gravitasi akan memaksa air melalui turbin guna membangkitkan energi listrik. Pada float systems yang mengatur pompa hydrolic berbentuk untaian rakit-rakit dihubungkan dengan engsel-engsel (Cockerell) bergerak naik turun mengikuti gelombang.Gerakan relatif menggerakkan pompa hidrolik yang berada di antara dua rakit. Tabung tegak Kayser juga dapat digunakan dengan pelampung yang bergerak naik turun didalamnya karena adanya tekanan air. Gerakan antara pelampung dan tabung menimbulkan tekanan hidrolik yang diubah menjadi energi listrik. Oscillating water column systems menggunakan gelombang untuk menekan udara diantara kontainer. Ketika gelombang masuk ke dalam kolom kontainer berakibat kolom air terangkat dan jatuh lagi sehingga terjadi perubahan tekanan udara. Sirkulasi yang terjadi mengaktifkan turbin sebagai hasil perbedaan tekanan yang ada. Beberapa sistem ini berfungsi juga sebagai tempat pemecah gelombang ‘breakwater’ seperti di pantai Limpit, Scotlandia dengan energi listrik yang dihasilkan sebesar 500 kW. Ada empat teknologi energi gelombang yaitu sistem rakit Cockerell, tabung tegak Kayser, pelampung Salter, dan tabung Masuda.

    Sistem rakit Cockerell berbentuk untaian rakit-rakit yang saling dihubungkan dengan engsel-engsel dan sistem ini bergerak naik turun mengikuti gelombang laut. Gerakan relatif rakit-rakit menggerakkan pompa hidrolik yang berada di antara dua rakit. Sistem tabung tegak Kayser menggunakan pelampung yang bergerak naik turun dalam tabung karena adanya tekanan air. Gerakan relatif antara pelampung dan tabung menimbulkan tekanan hidrolik yang dapat diubah menjadi energi listrik. Sistem Pelampung Salter memanfaatkan gerakan relatif antara bagian /pembungkus luar (external hull) dan bandul didalamnya (internal pendulum) untuk diubah menjadi energi listrik. Pada sistem tabung Masuda metodenya adalah memanfaatkan gerak gelombang laut masuk ke dalam ruang bawah dalam pelampung dan menimbulkan gerakan perpindahan udara di bagian ruangan atas dalam pelampung. Gerakan perpindahan udara ini dapat menggerakkan turbin udara.Lokasi potensial untuk membangun sistem energi gelombang adalah di laut lepas, daerah lintang sedang dan di perairan pantai. Energi gelombang bisa dikembangkan di Indonesia di laut selatan Pulau Jawa dan Pulau Sumatera.
  2. Cara kerja pembangkit listrik baru ini sangat sederhana. Sebuah tabung beton dipasang pada suatu ketinggian tertentu di pantai dan ujungnya dipasang dibawah permukaan air laut. Tiap kali ada ombak yang datang ke pantai, air di dalam tabung beton itu akan mendorong udara yang terdapat di bagian tabung yang terletak di darat. Pada saat ombak surut, terjadi gerakan udara yang sebaliknya dalam tabung tadi. Gerakan udara yang bolak-balik inilah yang dimanfaatkan untuk memutar turbin yang dihubungkan dengan sebuah pembangkit listrik. Sebuah alat khusus dipasang pada turbin itu supaya turbin hanya berputar satu arah, walaupun arah arus udara dalam tabung beton itu silih berganti.

Sabtu, 10 September 2011

10 Robot Tercanggih

1. Asimo 


Asimo berwujud seperti astronot dengan tinggi dan berat 130 cm/54 kg. Asimo yang diciptakan oleh Honda Motor Co ini memiliki kemampuan untuk berjalan dan bahkan lari. Robot yang memiliki sumber daya dari baterai ion ini mampu dikontrol dengan komputer nirkabel serta menerima perintah suara. Tak seperti robot lainya yang memiliki gerakan kaku, gerakan asimo lebih Halus sehingga mampu difungsikan untuk beragam pekerjaan.



2. T-52 ENRYU


Sebuah robot bertinggi 3,3 meter yang diciptakan Jepang untuk keperluan penyelamatan. ENRYU yang berarti naga diciptakan pertama kali pada tahun 2004 untuk mendampingi proses evakuasi korban gempa dan bencana yang terjadi di Jepang. Robot ini memiliki lengan yang mampu mengangkat 500 kg benda. Pada tahun 2007, diciptakan versi yang lebih baru dari robot ini, disebut T-53, untuk misi penyelamatan korban gempa di Nigata, Jepang.


3. Roomba



Robot yang diproduksi oleh iROBOT ini mampu mebersihkan rumah tanpa diperintah. Dijual dengan harga 200-500 dollar AS, robot yang diperkirakan telah dipakai oleh 2 juta rumah di dunia ini mampu membersihkan perabot rumah, lantai, tangga, dan karpet. Setiap menyentuh barang yang terbuat dari bahan berbeda, robot ini akan menyesuaikannya sehingga proses pembersihan tak merusak barang. iROBOT sendiri didirikan oleh sekolmpok orang yang menamakan dirinya “geeks” dari Massachusets Institute of Technology (MIT).




4. Spirit dan Opportunity


Spirit dan Opportunity sebenarnya adalah proyek NASA untuk mengeksplorasi tanda-tanda keberadaan air dan kehidupan di Mars pada masa lalu. Setiap harinya, robot kembar ini menerima satu set instruksi yang berbeda. Telah menempuh jarak yang sangat jauh, hingga kini Spirit dan Opprtunity berhasil mengirimkan 132.000 gambar yang mampu meyakinkan para ilmuwan tentang adanya air di planet Mars.



5. Da Vinci Surgical System



Diperkenalkan pertama kali pada tahun 1999, robot ini telah mengubah wajah ruang operasi di banyak belahan dunia. Da Vinci Surgical system dan Teknologi EndoWrist telah membuat banyak dokter bedah yang semula harus berdiri di depan pasien untuk mengoperasi menjadi duduk di kursi nyaman dan hanya bekerja mengendalikan si robot. Robot ini dilengkapi dengan instrumen mikro, mampu menirukan gerakan tangan dan mengoperasi dengan lebih cermat, bahkan bisa untuk melaklukan operasi kanker.




6. Audio Animatronics


Jenis robot ini diproduksi pertama kali pada tahun 1963 dalam bentuk burung di Disneyland’s Enchanted Tiki Room. Tahun selanjutnya, jenis robot ini juga dipamerkan di New York world’s fair dalam bentuk fihttp://202.146.5.105/kgeditor/index.cfm?siteno=1gur animasi Abraham Lincoln. Robot yang disebut terakhir ini mampu memesona pengunjung dengan membuat 57 jenis gerakan.





7. Unimate


Diciptakan pada tahun 1961 oleh General Motor untuk memudahkan beberapa pekerjaan pabrik. Dua pembuat robot yang beratnya mencapai 1800 kg ini terinspirasi oleh salah satu film sains fiksi pada waktu itu. Penciptaan robot ini memicu debut pembuatan PUMA (Programmable Universal Machine for Assembly) pada tahun 1978 yang merupakan peralatan robot standard yang digunakan di industri saat ini.



8. Elektro adan Sparko-nya


Elektro adalah robot raksasa yang memesona publik di New York World’s Fair pada tahun 1939. Robot ini memiliki tinggi sekitar 7 kaki atau 2.1 meter serta mampu berjalan, berbicara, menjawab pertanyaan dan bahkan merokok, kebiasaan yang sangat modis pada waktu itu. Tentunya ada keterbatasannya, yaitu hanya mampu mengenali 700 kata. Elektro punya teman seekor anjing yang juga robot, mampu menggonggong, meminta makanan dan mengibaskanya ekor, pastinya dengan perintah tertentu.




9. Maillardet’s Automaton


Robot yang bisa menulis dan menggambar gambaran yang cukup kompleks, itulah Maillardet’s Automaton. Dipamerkan di Institut Franklin di Philadelphia, robot ini dibuat oleh mekanik dan pembuat jam dari Swiss bernama Henri Maillardet pada awal 1800-an. Robot ini mampu menuliskan puisi dalam dua bahasa dan menggambar gambaran yang cukup kompleks. Pastinya, puisi dan gambaran yang bisa dilakukan adalah yang sudah tersimpan dalam memori yang disisipkan.





10.Digesting Duck atau Bebek Pencerna


Robot ini ditemukan oleh Jacques de Vaucanson yang berkewarganegaraan Perancis pada tahun 1739. Robot ini mampu memesona orang-orang pada waktu itu dengan kemampuannnya menirukan perilaku bebek. Ia dapat makan, minum, mencerna makanan dan buang air besar seperti layaknya bebek riil. Meski ada beberapa kepalsuan seperti makanan yang masuk sebenarnya hanya didorong ke bagian tertentu dalam robot sehingga kotoran palsu bisa keluar ke bagian lain, pembuatan robot ini tetap mempunyai efek yang besar. Si Bebek pencerna ternyata mendorong revolusi industri tenun dengan penemuan alat tenun otomatis.

Kamis, 04 Agustus 2011

Madrid Pinjamkan Canales ke Valencia




Madrid - Setelah jarang tampil membela Real Madrid musim lalu, Sergio Canales akhirnya dipinjamkan ke Valencia. Sang pemain pun mengaku senang atas proses transfer ini.

Kepastian dipinjamnya Canales oleh Valencia diumumkan Madrid melalui situs resmi mereka. Sementara itu, di situs resmi Valencia, Canales malah sudah bersuara.

"Saya sangat senang karena klub seperti Valencia tertarik dengan saya. Saya merasa bangga datang ke Valencia dan di sinilah saya ingin bermain," ucapnya.

"Valencia adalah klub hebat yang bertarung di papan atas, baik nasional maupun Eropa, setiap tahunnya. Selain itu, ini adalah langkah penting karena memberikan saya kesempatan untuk bermain di kompetisi elit sepakbola," lanjutnya.

Dari klausul yang sudah disepakati kedua klub, Valencia juga punya opsi untuk mempermanenkan status Canales. Gelandang serang berusia 20 tahun itu akan bergabung dengan El Che segera setelah memperkuat Spanyol di Piala Dunia U-20.

Canales punya kontrak enam tahun dengan Madrid. Kendati demikian, opsi untuk memperkuat Valencia tampaknya lebih menarik lantaran dirinya hanya dimainkan sebanyak 15 kali di semua kompetisi musim lalu.

Senin, 01 Agustus 2011

Robot -Robot "Manusia" Masa Depan

Robot Mata dan Telinga
Anda mengalami kebutaan akibat kecelakaan? Kini telah tersedia mata robot. Para ilmuan di London Inggris berhasil menciptakan retina mata elektronik sebagai pengganti retina mata yang rusak.

Implan retina elektronik atau mata bionik ciptaan ilmuan MIT ini dapat membantu orang-orang cacat mata  untuk melihat dengan lebih baik.


Diakuirekayasa ini belum sesempurna mata asili. Tetapi dengan menggantikan fungsi sel-sel retina, robot bionik ini dapat membantu memberikan tingkat visi dasar bagi mereka yang menderita retinitis pigmentosa, penyebab utama kebutaan.

Pengguna mata bionik memakai kacamata khusus yang dilengkapi  kamera yang mengirimkan gambar relay ke chip. Chip dibungkus titanium ditanamkan pada permukaan luar bola mata. Ketika menerima signal, chip mengolah data  dan mengirimkannya ke syaraf optik di bawah retina mataKacamata juga  mengirimkan signal secara nirkabel ke chip.

Selama 20 tahun, ilmuwan MIT berupaya menyempurnakan mata bionik ini dalam Proyek Boston Retinal Implant  agar setara dengan retina asliPada percobaan terhadap beberapa pasien yang buta didapatkan hasil  mereka seperti melihat awan ketika chip meneirma rangsangan.

"Kami perlu tiga tahun untuk menguji implan retina ini, agar bisa bekerja maksimal," jelas ketua kelompok ilmuwan MIT Jhon Wyatt, seperti yang dilansir Cnet, Selasa (29/9/2009).

Implan retina ini telah berhasil diujicobakan pada babi selama 10 bulan tanpa merusak elektronik.

Selain menciptakan mata bionik  yang melibatkan  20 tim ahli dari  seluruh dunia MIT juga tengah mengembangkan kuping  bionik yang nantinya akan menggantikan fungsi telinga pada pasien yang cacat pendengaran.

Jari Tangan Bionik
Robot lain yang kini terus disempurnakan adalah jari tangan bionik, prodigits Prodigits merupakan robot penganti jari tangan pertama  yang dijual secara umum.

Touch Bionics, perusahaan Inggris yang memenangkan penghargaan atas pembuatan tangan bionik  membuat sebuah tiruan jari tangan bagi  penyandang cacat. Dengan alat ini pasien yang tangan dan jarinya diamputasi  dapat menjalankan aktivitas normalnya kembaliIa  kembali bisa  menulis, minum dan aktivitas lainya seperti sebelum amputasi.

Prodigits digerakkan dengan beberapa motor listrik. Pengguna dapat mengerakkan jari-jari  bioniknya  tanpa harus melalui proses operasi.  Sensor-sensor  yang bersentuhan dengan sisa-sisa jari atau otot yang tidak teramputasi  akan mengirimkan signal ke chips.. Simpul-simpul ini  kemudian diterjemahkan dalam gerakan jari-jari bionik.

Ketika tangan dan jari teramputasi  untuk  memegang dan mengangkat segelas air  mustahil dilakukan. Dengan Prodigits aku bisa melakukannya dengan mudah,” ungkap  Maria Antonia Iglesias, (42) asal  SpanyolSetelah 42 tahun menunggu akhirnya ia mampu melakukan gerakan-gerakan sederhana itu dengan robot tangan bioniknya layaknya orang normal.

Touchbionics melansir, Prodigits  dijual dengan harga £ 35.000 sampai £ 45.000. Harga ini termasuk biaya pemasangan, terapi okupasi dan kulit penutup.

Mayoritas pengguna membeli Prodigits dengan dana pribadi. Tidak ada bantuan dari pemerintah. Karenanya Touch Bionics berupaya menjalin kerja sama dengan  National Health Service agar pembiayaan pembelian dan pemasangan robot ini menjadi lebih murah.

Robot Teman
Nippon Institute of Technology, bekerjasama dengan Harada Design, ZMP dan ZNUG  Design kini tengah mengembangkan robot lain, yakni robot yang mampu menggantikan fungsi manusia. Robot humanoid ini diberi nama E-Nuvo. E-Nuvo mempu berinteraksi dengan murid-murid SD atau SMP

Robot  didesain memiliki tinggi 126 cm sesuai dengan ukuran murid-murid SD dan SMP.  Para murid dapat berinteraksi langsung dan merawat robot ini.

E-Nuvo didesain menyerupai manusia,   memiliki dua buah kaki dan tangan serta kepala dengan total berat 15 kilogram. Sumber energi robot berasal dari baterai Lithium Ion.

Untuk bisa berinteraksi, robot  dilengkapi kamera, pengukur kecepatan, gyro sensor, sensor deteksi penghalang, sensor jarak, dan sensor piezoelectric. Robot ini dikembangkan dengan menggunakan Microsoft Robotika Developer Studio.